Statistical Pattern Recognition for Thresholding between Human Skin and Background in Color Images
نویسندگان
چکیده
Corresponding Author: Rafael Divino Ferreira Feitosa, Department of Informatics, Federal Institute Goiano, Goiânia, Goiás, Brazil Email: [email protected] Abstract: Many research works based on the tone of human skin have been developed to locate and track the human body for the purpose of recognition in color images. With respect to other techniques, some advantages of face detection based on skin color are the smaller processing time, invariant angles of rotation and the performance in semi-occluded faces. In this study we present the results of a survey that investigated the performance of 4 supervised classifiers in skin detection. In order to maximize the generalization of the models, a training set containing samples of individuals of different ages and ethnicities was used. Experimental results showed that the best performance was achieved by using an ANN and the worst results were yielded by LDA. With the Naive Bayes, QDA and ANN algorithms, we showed that the white, black, yellow and brown tones of human skin are in a well-defined range of the RGB color spectrum determined by common characteristics. We also compiled 2798 skin samples for treatment and 305 images with their manually obtained labels as supplementary material, which was made available to help in the development of further research in human skin detection.
منابع مشابه
Adaptive skin-color filter
In this paper, we propose a new method, called an adaptive skin color xlter, for detecting skin color regions in a color image. The use of skin color provides an e$cient way to "nd candidate regions for faces or hands in color images. However, it is not easy to "nd skin color regions because the color of skin regions varies from image to image due to a variety of reasons. Since most of the prev...
متن کاملLocal Derivative Pattern with Smart Thresholding: Local Composition Derivative Pattern for Palmprint Matching
Palmprint recognition is a new biometrics system based on physiological characteristics of the palmprint, which includes rich, stable, and unique features such as lines, points, and texture. Texture is one of the most important features extracted from low resolution images. In this paper, a new local descriptor, Local Composition Derivative Pattern (LCDP) is proposed to extract smartly stronger...
متن کاملRobust Palmprint Recognition Base on Touch-Less Color Palmprint Images Acquired
In order to make the environment of palmprint recognition more flexible and improve the accuracy of touchless palmprint recognition. This paper proposes a robust, touchless, palmprint recognition system which is based on color palmprint images. This system uses skin-color thresholding and hand valley detection algorithm for extracting palmprint. Then, the local binary pattern (LBP) is applied t...
متن کاملSkin Segmentation Using YUV and RGB Color Spaces
Skin detection is used in many applications, such as face recognition, hand tracking, and human-computer interaction. There are many skin color detection algorithms that are used to extract human skin color regions that are based on the thresholding technique since it is simple and fast for computation. The efficiency of each color space depends on its robustness to the change in lighting and t...
متن کاملThe Combinational Use Of Knowledge-Based Methods and Morphological Image Processing in Color Image Face Detection
The human facial recognition is the base for all facial processing systems. In this work a basicmethod is presented for the reduction of detection time in fixed image with different color levels.The proposed method is the simplest approach in face spatial localization, since it doesn’trequire the dynamics of images and information of the color of skin in image background. Inaddition, to do face...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JCS
دوره 13 شماره
صفحات -
تاریخ انتشار 2017